DocumentCode
3672494
Title
Learning graph structure for multi-label image classification via clique generation
Author
Mingkui Tan;Qinfeng Shi;Anton van den Hengel;Chunhua Shen; Junbin Gao; Fuyuan Hu;Zhen Zhang
Author_Institution
University of Adelaide, SA 5005, Australia
fYear
2015
fDate
6/1/2015 12:00:00 AM
Firstpage
4100
Lastpage
4109
Abstract
Exploiting label dependency for multi-label image classification can significantly improve classification performance. Probabilistic Graphical Models are one of the primary methods for representing such dependencies. The structure of graphical models, however, is either determined heuristically or learned from very limited information. Moreover, neither of these approaches scales well to large or complex graphs. We propose a principled way to learn the structure of a graphical model by considering input features and labels, together with loss functions. We formulate this problem into a max-margin framework initially, and then transform it into a convex programming problem. Finally, we propose a highly scalable procedure that activates a set of cliques iteratively. Our approach exhibits both strong theoretical properties and a significant performance improvement over state-of-the-art methods on both synthetic and real-world data sets.
Keywords
"Yttrium","Graphical models","Joints","Standards","Encoding","Optimization","Transforms"
Publisher
ieee
Conference_Titel
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN
1063-6919
Type
conf
DOI
10.1109/CVPR.2015.7299037
Filename
7299037
Link To Document