DocumentCode :
3672591
Title :
Learning deep representations for ground-to-aerial geolocalization
Author :
Tsung-Yi Lin; Yin Cui;Serge Belongie;James Hays
Author_Institution :
Cornell Tech, USA
fYear :
2015
fDate :
6/1/2015 12:00:00 AM
Firstpage :
5007
Lastpage :
5015
Abstract :
The recent availability of geo-tagged images and rich geospatial data has inspired a number of algorithms for image based geolocalization. Most approaches predict the location of a query image by matching to ground-level images with known locations (e.g., street-view data). However, most of the Earth does not have ground-level reference photos available. Fortunately, more complete coverage is provided by oblique aerial or “bird´s eye” imagery. In this work, we localize a ground-level query image by matching it to a reference database of aerial imagery. We use publicly available data to build a dataset of 78K aligned crossview image pairs. The primary challenge for this task is that traditional computer vision approaches cannot handle the wide baseline and appearance variation of these cross-view pairs. We use our dataset to learn a feature representation in which matching views are near one another and mismatched views are far apart. Our proposed approach, Where-CNN, is inspired by deep learning success in face verification and achieves significant improvements over traditional hand-crafted features and existing deep features learned from other large-scale databases. We show the effectiveness of Where-CNN in finding matches between street view and aerial view imagery and demonstrate the ability of our learned features to generalize to novel locations.
Keywords :
"Geology","Yttrium","Training"
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2015.7299135
Filename :
7299135
Link To Document :
بازگشت