DocumentCode :
3678528
Title :
Data Driven Condition Monitoring of Wind Power Plants Using Cluster Analysis
Author :
Peng Li;Jens Eickmeyer;Oliver Niggemann
Author_Institution :
inIT - Inst. Ind. IT, OWL Univ. of Appl. Sci., Lemgo, Germany
fYear :
2015
Firstpage :
131
Lastpage :
136
Abstract :
Along with the rapid growth of the wind energy sector, reducing the wind energy costs caused by unplanned downtimes and maintenances has aroused great concern of researchers. Condition monitoring system (CMS) is widely used for detecting anomalies of wind power plants (WPPs) so as to reduce the downtimes and optimize the maintenance plan. However, current solutions to condition monitoring of WPPs focus mostly on detecting a particular anomaly on a single component or a subsystem. Optimizing the maintenance plan of whole wind power plant requires a solution to system level condition monitoring of WPPs. This paper gives an approach for system level condition monitoring of WPPs using data driven method, that provides an overall picture of the system statuses. Firstly, cluster analysis is utilized to automatically learn the normal behavior model of WPPs from the observations. Two clustering algorithms are explored to choose a suitable one for modeling the WPPs. The presented anomaly detection algorithm uses the learned model as reference to detect the system anomalies. The effectiveness of this approach is evaluated with real world data.
Keywords :
"Condition monitoring","Data models","Wind power generation","Clustering algorithms","Principal component analysis","Analytical models"
Publisher :
ieee
Conference_Titel :
Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2015 International Conference on
Type :
conf
DOI :
10.1109/CyberC.2015.16
Filename :
7307799
Link To Document :
بازگشت