Title :
Detecting intention to grasp during reaching movements from EEG
Author :
Luca Randazzo;Iñaki Iturrate;Ricardo Chavarriaga;Robert Leeb;José del R. Millán
Author_Institution :
Brain-Machine Interface (CNBI), Center for Neuroprosthetics (CNP) and É
Abstract :
Brain-computer interfaces (BCI) have been shown to be a promising tool in rehabilitation and assistive scenarios. Within these contexts, brain signals can be decoded and used as commands for a robotic device, allowing to translate user´s intentions into motor actions in order to support the user´s impaired neuro-muscular system. Recently, it has been suggested that slow cortical potentials (SCPs), negative deflections in the electroencephalographic (EEG) signals peaking around one second before the initiation of movements, might be of interest because they offer an accurate time resolution for the provided feedback. Many state-of-the-art studies exploiting SCPs have focused on decoding intention of movements related to walking and arm reaching, but up to now few studies have focused on decoding the intention to grasp, which is of fundamental importance in upper-limb tasks. In this work, we present a technique that exploits EEG to decode grasping correlates during reaching movements. Results obtained with four subjects show the existence of SCPs prior to the execution of grasping movements and how they can be used to classify, with accuracy rates greater than 70% across all subjects, the intention to grasp. Using a sliding window approach, we have also demonstrated how this intention can be decoded on average around 400 ms before the grasp movements for two out of four subjects, and after the onset of grasp itself for the two other subjects.
Keywords :
"Electroencephalography","Grasping","Decoding","Accuracy","Brain-computer interfaces","Robots","Medical treatment"
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
Electronic_ISBN :
1558-4615
DOI :
10.1109/EMBC.2015.7318561