• DocumentCode
    3684497
  • Title

    Supervised nonlinear dimension reduction of functional magnetic resonance imaging data using Sliced Inverse Regression

  • Author

    Yiheng Tu;Ao Tan;Zening Fu; Yeung Sam Hung;Li Hu;Zhiguo Zhang

  • Author_Institution
    Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong
  • fYear
    2015
  • Firstpage
    2641
  • Lastpage
    2644
  • Abstract
    Dimension reduction is essential for identifying a small set of discriminative features that are predictive of behavior or cognition from high-dimensional functional magnetic resonance imaging (fMRI) data. However, conventional linear dimension reduction techniques cannot reduce the dimension effectively if the relationship between imaging data and behavioral parameters are nonlinear. In the paper, we proposed a novel supervised dimension reduction technique, named PC-SIR (Principal Component - Sliced Inverse Regression), for analyzing high-dimensional fMRI data. The PC-SIR method is an important extension of the renowned SIR method, which can achieve the effective dimension reduction (e.d.r.) directions even the relationship between class labels and predictors is nonlinear but is unable to handle high-dimensional data. By using PCA prior to SIR to orthogonalize and reduce the predictors, PC-SIR can overcome the limitation of SIR and thus can be used for fMRI data. Simulation showed that PC-SIR can result in a more accurate identification of brain activation as well as better prediction than support vector regression (SVR) and partial least square regression (PLSR). Then, we applied PC-SIR on real fMRI data recorded in a pain stimulation experiment to identify pain-related brain regions and predict the pain perception. Results on 32 subjects showed that PC-SIR can lead to significantly higher prediction accuracy than SVR and PLSR. Therefore, PC-SIR could be a promising dimension reduction technique for multivariate pattern analysis of fMRI.
  • Keywords
    "Pain","Principal component analysis","Brain modeling","Predictive models","Data models","Support vector machines","Neuroimaging"
  • Publisher
    ieee
  • Conference_Titel
    Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
  • ISSN
    1094-687X
  • Electronic_ISBN
    1558-4615
  • Type

    conf

  • DOI
    10.1109/EMBC.2015.7318934
  • Filename
    7318934