DocumentCode :
3707275
Title :
Supervised fractional eigenfaces
Author :
T. B. A. de Carvalho;A. M. Costa;M. A. A. Sibaldo;I. R. Tsang;G. D. C. Cavalcanti
Author_Institution :
Unidade Acadê
fYear :
2015
Firstpage :
552
Lastpage :
555
Abstract :
Supervised Fractional Eigenfaces (SFE) is an extension of Principal Component Analysis (PCA), which uses the fractional covariance matrix, class label information, and nonlinear data transformation to extract discriminant features. The proposed method combines techniques of two state-of-the-art feature extractors: Fractional Eigenfaces and Dual Supervised PCA. Supervised Fractional Eigenfaces was evaluated in three known face datasets and it achieved significant smaller recognition error.
Keywords :
"Feature extraction","Principal component analysis","Iron","Face","Covariance matrices","Face recognition","Eigenvalues and eigenfunctions"
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2015 IEEE International Conference on
Type :
conf
DOI :
10.1109/ICIP.2015.7350859
Filename :
7350859
Link To Document :
بازگشت