Title :
A new spherical simplex unscented Kalman filter-based jumping and static interacting multiple model
Author :
Pan Yi; He Keke; Ye Hui
Author_Institution :
Department of Mathematic and Computer Science, Changsha University, China
Abstract :
A modified interacting multiple model (IMM) method called spherical simplex unscented Kalman filter-based jumping and static IMM (SSUKF-JSIMM) is proposed to solve the problem of nonlinear filtering with unknown continuous system parameter. SSUKF-JSIMM regards the continuous system parameter space as a union of disjoint regions, and each region is assigned to a model. For each model, under the assumption that the parameter belongs to the corresponding region, one sub-filter is used to estimate the parameter and the state when the parameter is presumed to be jumping, and another sub-filter is used to estimate the parameter and the state when the parameter is presumed to be static. Considering that spherical simplex unscented Kalman filter (SSUKF) is more suitable for a real-time system than the unscented Kalman filter (UKF), SSUKFs are adopted as the sub-filters of SSUKF-JSIMM. Results of the two SSUKFs are fused as the estimation output of the model. Experimental results show that SSUKF-JSIMM achieves higher performance than IMM, SIR, and UKF in bearings-only tracking problem.
Keywords :
"Kalman filters","Computational modeling","Estimation","Mathematical model","Markov processes","Probability"
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th International Conference on
DOI :
10.1109/FSKD.2015.7382225