DocumentCode
3734705
Title
Nano-engineered materials for Fischer-Tropsch catalysis
Author
Suraj Gyawali;Fernando Soto;Sumegha Godara;Daniela S. Mainardi
Author_Institution
Institute for Micromanufacturing, Chemical Engineering, Louisiana Tech University, Ruston, United States of America
fYear
2015
fDate
7/1/2015 12:00:00 AM
Firstpage
702
Lastpage
705
Abstract
Pure and bimetallic nanoclusters containing Ru, Fe, Ni, Co, Pd, and Mn have been explored for Fischer-Tropsch activity. Using Density Functional Theory, nanoclusters of approximately 0.5, 0.8, and 1.5 nm in diameter respectively were found to have particular structural stability. Classical Molecular Dynamics simulations have been conducted to investigate the thermal stability of the nanoclusters of about 1.2 to 1.5 nm in diameter, as those are typically the smallest sizes that can be achieved experimentally. These cluster sizes showed thermal stability at the typical temperature of the FT process (200 - 250°C range). CO adsorption energies on several nanocatalysts were calculated for adsorption on all different possible sites. Using CO adsorption energy results in combination with CO dissociation energies, a smaller list of nanoclusters were identified as potentially effective catalysts for FT catalysis, and selected for further reactivity testing. Particularly, Fe4Co10 seems to be a promising candidate, as both CO adsorption and dissociation energies are favorable. The effectiveness of Fe4Co10 upon Fischer-Tropsch activity has been explored and results obtained at the LDA/VWN theory level are in good agreement with the literature, as the formation of adsorbed HCOH species on the catalyst surface was found to be one of the rate determining steps, as expected, with an energy barrier of 0.14 eV/atom.
Keywords
"Iron","Adsorption","Nickel","Thermal stability","Manganese","Stability analysis","Mathematical model"
Publisher
ieee
Conference_Titel
Nanotechnology (IEEE-NANO) , 2015 IEEE 15th International Conference on
Type
conf
DOI
10.1109/NANO.2015.7388703
Filename
7388703
Link To Document