DocumentCode :
3743170
Title :
Complete Vehicle Energy Management with large horizon optimization
Author :
T.C.J. Romijn;M.C.F. Donkers;J.T.B.A. Kessels;S. Weiland
Author_Institution :
Dep. of Elect. Eng. of Eindhoven Univ. of Tech., Netherlands
fYear :
2015
Firstpage :
632
Lastpage :
637
Abstract :
In this paper, we extend the dual decomposition approach to Complete Vehicle Energy Management (CVEM) with novel solution methods to reduce computation time. The CVEM problem is solved for a case study of a hybrid heavy-duty vehicle, equipped with an electric machine, a high-voltage battery system and a refrigerated semi-trailer, by combining two solution methods. The first proposed solution method is to apply another decomposition on top of the dual decomposition that was proposed before. This additional decomposition is based on the Alternating Direction Method of Multipliers. The second proposed solution method uses the Lagrangian Method that is best suited for systems whose optimal state trajectory has limited contact points with its constraints. The computational efficiency is demonstrated by solving the problem for a drive cycle with 88656 time steps in 29 minutes. Moreover, we show that for a drive cycle of 2000 time steps, the computation time can be reduced with a factor 100, when compared to the previously proposed dual decomposition approach.
Keywords :
"Vehicles","Batteries","Optimization","Energy management","Ice","Fuels"
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2015 IEEE 54th Annual Conference on
Type :
conf
DOI :
10.1109/CDC.2015.7402300
Filename :
7402300
Link To Document :
بازگشت