DocumentCode
3745877
Title
Sequential Score Adaptation with Extreme Value Theory for Robust Railway Track Inspection
Author
Xavier Gibert;Vishal M. Patel;Rama Chellappa
Author_Institution
Univ. of Maryland, College Park, MD, USA
fYear
2015
Firstpage
131
Lastpage
138
Abstract
Periodic inspections are necessary to keep railroad tracks in state of good repair and prevent train accidents. Automatic track inspection using machine vision technology has become a very effective inspection tool. Because of its non-contact nature, this technology can be deployed on virtually any railway vehicle to continuously survey the tracks and send exception reports to track maintenance personnel. However, as appearance and imaging conditions vary, false alarm rates can dramatically change, making it difficult to select a good operating point. In this paper, we use extreme value theory (EVT) within a Bayesian framework to optimally adjust the sensitivity of anomaly detectors. We show that by approximating the lower tail of the probability density function (PDF) of the scores with an Exponential distribution (a special case of the Generalized Pareto distribution), and using the Gamma conjugate prior learned from the training data, it is possible to reduce the variability in false alarm rate and improve the overall performance. This method has shown an increase in the defect detection rate of rail fasteners in the presence of clutter (at PFA 0.1%) from 95.40% to 99.26% on the 85-mile Northeast Corridor (NEC) 2012-2013 concrete tie dataset.
Keywords
"Fasteners","Inspection","Robustness","Detectors","Feature extraction","Bayes methods","Indexes"
Publisher
ieee
Conference_Titel
Computer Vision Workshop (ICCVW), 2015 IEEE International Conference on
Type
conf
DOI
10.1109/ICCVW.2015.27
Filename
7406376
Link To Document