DocumentCode :
3748547
Title :
Learning Informative Edge Maps for Indoor Scene Layout Prediction
Author :
Arun Mallya;Svetlana Lazebnik
fYear :
2015
Firstpage :
936
Lastpage :
944
Abstract :
In this paper, we introduce new edge-based features for the task of recovering the 3D layout of an indoor scene from a single image. Indoor scenes have certain edges that are very informative about the spatial layout of the room, namely, the edges formed by the pairwise intersections of room faces (two walls, wall and ceiling, wall and floor). In contrast with previous approaches that rely on area-based features like geometric context and orientation maps, our method attempts to directly detect these informative edges. We learn to predict ´informative edge´ probability maps using two recent methods that exploit local and global context, respectively: structured edge detection forests, and a fully convolutional network for pixelwise labeling. We show that the fully convolutional network is quite successful at predicting the informative edges even when they lack contrast or are occluded, and that the accuracy can be further improved by training the network to jointly predict the edges and the geometric context. Using features derived from the ´informative edge´ maps, we learn a maximum margin structured classifier that achieves state-of-the-art performance on layout prediction.
Keywords :
"Image edge detection","Layout","Three-dimensional displays","Context","Clutter","Training","Feature extraction"
Publisher :
ieee
Conference_Titel :
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN :
2380-7504
Type :
conf
DOI :
10.1109/ICCV.2015.113
Filename :
7410470
Link To Document :
بازگشت