DocumentCode
3748784
Title
Hierarchical Convolutional Features for Visual Tracking
Author
Chao Ma;Jia-Bin Huang;Xiaokang Yang;Ming-Hsuan Yang
fYear
2015
Firstpage
3074
Lastpage
3082
Abstract
Visual object tracking is challenging as target objects often undergo significant appearance changes caused by deformation, abrupt motion, background clutter and occlusion. In this paper, we exploit features extracted from deep convolutional neural networks trained on object recognition datasets to improve tracking accuracy and robustness. The outputs of the last convolutional layers encode the semantic information of targets and such representations are robust to significant appearance variations. However, their spatial resolution is too coarse to precisely localize targets. In contrast, earlier convolutional layers provide more precise localization but are less invariant to appearance changes. We interpret the hierarchies of convolutional layers as a nonlinear counterpart of an image pyramid representation and exploit these multiple levels of abstraction for visual tracking. Specifically, we adaptively learn correlation filters on each convolutional layer to encode the target appearance. We hierarchically infer the maximum response of each layer to locate targets. Extensive experimental results on a largescale benchmark dataset show that the proposed algorithm performs favorably against state-of-the-art methods.
Keywords
"Visualization","Target tracking","Correlation","Feature extraction","Semantics","Spatial resolution","Robustness"
Publisher
ieee
Conference_Titel
Computer Vision (ICCV), 2015 IEEE International Conference on
Electronic_ISBN
2380-7504
Type
conf
DOI
10.1109/ICCV.2015.352
Filename
7410709
Link To Document