Title :
Thermal heating during microwave processing for cerium oxide particles packing: Multiphysics modelling approach. Study of the effect of particle and neck sizes
Author :
Hussein Hammoud;Fran?ois Valdivieso;S?bastien Vaucher
Author_Institution :
Laboratoire Georges Friedel CNRS UMR 5307, St-Etienne, France
Abstract :
In this work a single mode resonant microwave cavity (2.45 GHz) is loaded with spherical particles. A weakly coupled Electromagnetic-Thermal (EM-thermal) solver is used iteratively to determine how the microscopic geometry (local curvatures between the particles, grain size and neck size) modifies the electromagnetic field, and in turn the thermal field in the particles. The modelling is performed with the conformai Finite Element (FE) solver COMSOL Multiphysics. The dielectric and the thermal properties of cerium oxide (ceria) particles up to 1000°C have been determined in our previous study [1]. The main variables in this study are: 1-The radius of the spherical ceria particle [R, 3*5*R] 2- The size of the neck between two particles [X/R= 0.1, 0.15, 0.2].
Keywords :
Decision support systems
Conference_Titel :
Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 2015 IEEE MTT-S International Conference on
DOI :
10.1109/NEMO.2015.7415042