DocumentCode :
3775918
Title :
Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios
Author :
Dangwei Li;Xiaotang Chen;Kaiqi Huang
Author_Institution :
CRIPAC & NLPR, CASIA
fYear :
2015
Firstpage :
111
Lastpage :
115
Abstract :
In real video surveillance scenarios, visual pedestrian attributes, such as gender, backpack, clothes types, are very important for pedestrian retrieval and person reidentification. Existing methods for attributes recognition have two drawbacks: (a) handcrafted features (e.g. color histograms, local binary patterns) cannot cope well with the difficulty of real video surveillance scenarios; (b) the relationship among pedestrian attributes is ignored. To address the two drawbacks, we propose two deep learning based models to recognize pedestrian attributes. On the one hand, each attribute is treated as an independent component and the deep learning based single attribute recognition model (DeepSAR) is proposed to recognize each attribute one by one. On the other hand, to exploit the relationship among attributes, the deep learning framework which recognizes multiple attributes jointly (DeepMAR) is proposed. In the DeepMAR, one attribute can contribute to the representation of other attributes. For example, the gender of woman can contribute to the representation oflong hair and wearing skirt. Experiments on recent popular pedestrian attribute datasets illustrate that our proposed models achieve the state-of-the-art results.
Keywords :
"Surveillance","Hair","Training","Computational modeling","Pattern recognition","Visualization","Machine learning"
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ACPR), 2015 3rd IAPR Asian Conference on
Electronic_ISBN :
2327-0985
Type :
conf
DOI :
10.1109/ACPR.2015.7486476
Filename :
7486476
Link To Document :
بازگشت