Title :
Integration of equation- and signal-based models in transient analysis of electric energy systems
Author :
A.T. Saric;A.M. Stankovic
Author_Institution :
Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
Abstract :
The paper addresses analytical and practical aspects of integration of equation-based (classical) and signal-derived [artificial neural network (ANN)] dynamic models for transient analysis of large-scale dynamical systems. Our signal-based part is based on two ANNs, and is derived from measurements at boundary points. In this paper, we describe this hybrid modeling technique, and focus on: 1) a least square-based mechanism for on-line correction of dynamic variable predictions that is based on actual operating conditions; 2) the resilience of the algorithm to missing measurements due to failed communication links; and 3) a complete two-way interaction between the differential-algebraic equation based subsystem and the ANN-based subsystem. The paper demonstrates the feasibility of implementing our approach in standard power system software by integrating the ANN-based model with the transient analysis toolbox from Matlab. We illustrate capabilities of the proposed approach for transient analysis on a benchmark multi-machine example derived from the New England/New-York interconnected power system.
Keywords :
"Transient analysis","Mathematical model","Power system interconnection","Power system modeling","Artificial neural networks","Power system analysis computing","Power system transients","Signal analysis","Large scale integration","Predictive models"
Journal_Title :
IEEE Transactions on Circuits and Systems I: Regular Papers
DOI :
10.1109/TCSI.2006.877887