DocumentCode :
3809410
Title :
Use of Auricular Chondrocytes for Lining Artificial Surfaces: A Mathematical Model
Author :
Suncica Canic*;Doreen Rosenstrauch
Author_Institution :
Dept. of Math., Univ. of Houston, Houston, TX
Volume :
7
Issue :
3
fYear :
2008
Firstpage :
240
Lastpage :
245
Abstract :
Auricular elastic cartilage is a potential source for lining of luminal surfaces of implantable vascular devices, such as stents and left ventricular assist devices with the purpose to improve their biocompatibility. Auricular chondrocytes are easily accessible, harvested, and isolated, and they have been shown to provide a strong adherent cell lining for left ventricular assist devices. Additionally, Dr. Rosenstrauch et al. have shown that it is possible to genetically engineer auricular chondrocytes to produce antithrombogenic factors. Thus, implantable vascular devices, such as coronary stents covered with genetically engineered auricular chondrocytes might lower restenosis rates and provide a long-lasting biocompatible prosthesis. In this paper, to optimize the process of lining of artificial surfaces with auricular cartilage, we devise a mathematical model that describes the rate of cell division and growth of extracellular matrix as a function of the initial cell count, proximity to other cells, and the type of artificial surface. Our mathematical model was experimentally tested using two different cell cultures (auricular chondrocytes and dermal fibroblasts) seeded on different artificial surfaces (tc-treated polystyrene and aluminum foil). Excellent agreement between the model and experiment was obtained. This mathematical model can be used to, for example, determine the optimum number of initially seeded cells that would provide fastest coverage of a given artificial surface.
Keywords :
"Mathematical model","Genetic engineering","Cartilage","Extracellular","Cardiology","Hospitals","Immune system","Surface texture","Electrochemical machining","Muscles"
Journal_Title :
IEEE Transactions on NanoBioscience
Publisher :
ieee
ISSN :
1536-1241
Type :
jour
DOI :
10.1109/TNB.2008.2003364
Filename :
4618628
Link To Document :
بازگشت