DocumentCode :
382357
Title :
An ICA algorithm for analyzing multiple data sets
Author :
Lukic, Ana S. ; Wernick, Miles N. ; Hansen, Lars Kai ; Strother, Stephen C.
Author_Institution :
Illinois Inst. of Technol., Chicago, IL, USA
Volume :
2
fYear :
2002
fDate :
2002
Abstract :
We derive an independent-component analysis (ICA) method for analyzing two or more data sets simultaneously. Our model permits there to be components individual to the various data sets, and others that are common to all the sets. We explore the assumed time autocorrelation of independent signal components and base our algorithm on prediction analysis. We illustrate the algorithm using a simple image separation example. Our aim is to apply this method to functional brain mapping using functional magnetic resonance imaging (fMRI).
Keywords :
biomedical MRI; blind source separation; brain; correlation methods; independent component analysis; medical image processing; prediction theory; ICA algorithm; PCA; blind source separation; fMRI; functional brain mapping; functional magnetic resonance imaging; image separation; independent signal components; independent-component analysis; multiple data sets analysis; prediction analysis; time autocorrelation; white noise; Algorithm design and analysis; Autocorrelation; Biomedical imaging; Blind source separation; Data analysis; Delay; Independent component analysis; Magnetic analysis; Prediction algorithms; Signal analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing. 2002. Proceedings. 2002 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7622-6
Type :
conf
DOI :
10.1109/ICIP.2002.1040077
Filename :
1040077
Link To Document :
بازگشت