• DocumentCode
    38275
  • Title

    Background Density Nonparametric Estimation With Data-Adaptive Bandwidths for the Detection of Anomalies in Multi-Hyperspectral Imagery

  • Author

    Matteoli, Stefania ; Veracini, Tiziana ; Diani, Marco ; Corsini, Giovanni

  • Author_Institution
    Dipartimento di Ingegneria dell´Informazione, Università di Pisa, Pisa, Italy
  • Volume
    11
  • Issue
    1
  • fYear
    2014
  • fDate
    Jan. 2014
  • Firstpage
    163
  • Lastpage
    167
  • Abstract
    This letter presents a scheme for detecting global anomalies, in which a likelihood ratio test based decision rule is applied in conjunction with an automated data-driven estimation of the background probability density function (PDF). The latter is reliably estimated with a nonparametric variable-band width kernel density estimator (VKDE), without making any distributional assumption. With respect to conventional fixed bandwidth KDE (FKDE), which lacks adaptivity due to the use of a bandwidth that is fixed across the entire feature space, VKDE lets the bandwidths adaptively vary pixel by pixel, tailoring the amount of smoothing to the local data density. Two multispectral images are employed to explore the potential of VKDE background PDF estimation for detecting anomalies in a scene with respect to conventional nonadaptive FKDE.
  • Keywords
    hyperspectral imaging; image processing; maximum likelihood estimation; probability; anomalies detection; background density nonparametric estimation; data-adaptive bandwidths; decision rule; fixed bandwidth KDE; likelihood ratio test; multihyperspectral imagery; nonparametric variable-band width kernel density estimator; probability density function; Anomaly detection; multi-hyperspectral images; variable bandwidth kernel density estimation;
  • fLanguage
    English
  • Journal_Title
    Geoscience and Remote Sensing Letters, IEEE
  • Publisher
    ieee
  • ISSN
    1545-598X
  • Type

    jour

  • DOI
    10.1109/LGRS.2013.2250907
  • Filename
    6509402