DocumentCode :
3850367
Title :
Robust Localization of Nodes and Time-Recursive Tracking in Sensor Networks Using Noisy Range Measurements
Author :
Pınar Oguz-Ekim;João Pedro Gomes;João Xavier;Paulo Oliveira
Author_Institution :
Institute for Systems and Robotics, Instituto Superior T?cnico (ISR/IST), Lisbon, Portugal
Volume :
59
Issue :
8
fYear :
2011
Firstpage :
3930
Lastpage :
3942
Abstract :
Simultaneous localization and tracking (SLAT) in sensor networks aims to determine the positions of sensor nodes and a moving target in a network, given incomplete and inaccurate range measurements between the target and each of the sensors. One of the established methods for achieving this is to iteratively maximize a likelihood function (ML) of positions given the observed ranges, which requires initialization with an approximate solution to avoid convergence towards local extrema. This paper develops methods for handling both Gaussian and Laplacian noise, the latter modeling the presence of outliers in some practical ranging systems that adversely affect the performance of localization algorithms designed for Gaussian noise. A modified Euclidean distance matrix (EDM) completion problem is solved for a block of target range measurements to approximately set up initial sensor/target positions, and the likelihood function is then iteratively refined through majorization-minimization (MM). To avoid the computational burden of repeatedly solving increasingly large EDM problems in time-recursive operation, an incremental scheme is exploited whereby a new target/node position is estimated from previously available node/target locations to set up the iterative ML initial point for the full spatial configuration. The above methods are first derived under Gaussian noise assumptions, and modifications for Laplacian noise are then considered. Analytically, the main challenges to overcome in the Laplacian case stem from the non-differentiability of l1 norms that arise in the various cost functions. Simulation results show that the proposed algorithms significantly outperform existing localization methods in the presence of outliers, while providing comparable performance for Gaussian noise.
Keywords :
"Laplace equations","Position measurement","Robot sensing systems","Gaussian noise","Cost function","Noise measurement"
Journal_Title :
IEEE Transactions on Signal Processing
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2011.2153848
Filename :
5766054
Link To Document :
بازگشت