• DocumentCode
    388693
  • Title

    Two-phase quantile estimation

  • Author

    Chen, E. Jack

  • Author_Institution
    BASF Corp., Mount Olive, NJ, USA
  • Volume
    1
  • fYear
    2002
  • fDate
    8-11 Dec. 2002
  • Firstpage
    447
  • Abstract
    The paper discusses the implementation of a two-phase procedure to construct confidence intervals for a simulation estimator of the steady-state quantiles of stochastic processes. We compute sample quantiles at certain grid points and use Lagrange interpolation to estimate the p quantile. The algorithm dynamically increases the sample size so that quantile estimates satisfy the proportional precision at the first phase and the relative or absolute precision at the second phase. We show that the procedure gives asymptotically unbiased quantile estimates. An experimental performance evaluation demonstrates the validity of using grid points and the quasi-independent procedure to estimate quantiles.
  • Keywords
    interpolation; simulation; stochastic processes; Lagrange interpolation; absolute precision; asymptotically unbiased quantile estimates; confidence intervals; grid points; p quantile estimation; proportional precision; quasi-independent procedure; relative precision; sample quantiles; sample size; simulation estimator; steady-state quantiles; stochastic processes; two-phase procedure; two-phase quantile estimation; Analytical models; Computational modeling; Grid computing; Heuristic algorithms; Histograms; Interpolation; Lagrangian functions; Lifting equipment; Steady-state; Stochastic processes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Simulation Conference, 2002. Proceedings of the Winter
  • Print_ISBN
    0-7803-7614-5
  • Type

    conf

  • DOI
    10.1109/WSC.2002.1172916
  • Filename
    1172916