• DocumentCode
    391065
  • Title

    Error bounds for lower semicontinuous inequality systems

  • Author

    Wu, Zili ; Ye, Jane J.

  • Author_Institution
    Dept. of Math. & Stats, Victoria Univ., BC, Canada
  • Volume
    3
  • fYear
    2002
  • fDate
    10-13 Dec. 2002
  • Firstpage
    3553
  • Abstract
    Let X be a Banach space and f:X →(-∞, ∞) be a proper and lower semicontinuous function, denoted as S={x ∈ X:f(x)≤0}, ds(x) :=inf{||x-s||:s ∈ S}. We say that the system f(x) ≤ 0 (or s) has a local (global) error bound if S is nonempty and, for some 0 < μ and ε ∈(0,+∞) (ε=+∞), ds(x) ≤ μf(x)+∀x ∈ X with f+(x)<ε, where f(x)+ := max{f(x),0}. We recall the concept of an abstract subdifferential ∂ω subdifferential defined by Wu et al. (2001).
  • Keywords
    Banach spaces; Hilbert spaces; differentiation; optimisation; Banach space; Hilbert space; error bounds; lower semicontinuous inequality systems; subdifferential; Hilbert space; Sufficient conditions;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-7516-5
  • Type

    conf

  • DOI
    10.1109/CDC.2002.1184427
  • Filename
    1184427