DocumentCode
394105
Title
SiGe HBT performance and reliability trends through fT of 350 GHz
Author
Freeman, Greg ; Rieh, Jae-Sung ; Jagannathan, Basanth ; Yang, Zhijian ; Guarin, Fernando ; Joseph, Alvin ; Ahlgren, David
Author_Institution
IBM Microelectron. Semicond. Res. & Dev. Center, Hopewell Junction, NY, USA
fYear
2003
fDate
30 March-4 April 2003
Firstpage
332
Lastpage
338
Abstract
We discuss the SiGe HBT structural changes required for very high performance. The increase in collector concentration, affecting current density and avalanche current, appears to be the most fundamental concern for reliability. In device design, a narrow emitter and reduced poly-single-crystal interfacial oxide are important elements in minimizing device parameter shifts. From the application point of view, avalanche hot-carriers appear to present new constraints, which may be managed through limiting voltage (to 1.5×-2× BVCEO), or through circuit designs robust to base current parameter shifts.
Keywords
Ge-Si alloys; avalanche breakdown; current density; heterojunction bipolar transistors; hot carriers; semiconductor device breakdown; semiconductor device reliability; semiconductor materials; 350 GHz; SiGe; SiGe HBT; avalanche current; avalanche hot-carriers; base current parameter shift robustness; circuit designs; collector concentration; current density; device design; device scaling; narrow emitter; poly-single-crystal interfacial oxide; reliability trends; structural changes; Circuit noise; Current density; Germanium silicon alloys; Heterojunction bipolar transistors; Integrated circuit reliability; Materials reliability; Semiconductor device noise; Silicon germanium; Technological innovation; Thermal management;
fLanguage
English
Publisher
ieee
Conference_Titel
Reliability Physics Symposium Proceedings, 2003. 41st Annual. 2003 IEEE International
Print_ISBN
0-7803-7649-8
Type
conf
DOI
10.1109/RELPHY.2003.1197769
Filename
1197769
Link To Document