DocumentCode
394651
Title
Sliding window orthonormal PAST algorithm
Author
Badeau, R. ; Abed-Meraim, K. ; Richard, G. ; David, B.
Author_Institution
Ecole Nat. Superieure des Telecommun., Paris, France
Volume
5
fYear
2003
fDate
6-10 April 2003
Abstract
This paper introduces an orthonormal version of the sliding-window projection approximation subspace tracker (PAST). The new algorithm guarantees the orthonormality of the signal subspace basis at each iteration. Moreover, it has the same complexity as the original PAST algorithm, and like the more computationally demanding natural power (NP) method, it satisfies a global convergence property, and reaches an excellent tracking performance.
Keywords
adaptive filters; convergence of numerical methods; iterative methods; parameter estimation; source separation; tracking filters; adaptive filtering; complexity; global convergence property; iteration; orthonormal PAST algorithm; orthonormality; parameter estimation; projection approximation subspace tracker; signal subspace basis; sliding window; source localization; tracking performance; Adaptive filters; Convergence; Cost function; Covariance matrix; Data mining; Direction of arrival estimation; Frequency estimation; Iterative methods; Parameter estimation; Recursive estimation;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on
ISSN
1520-6149
Print_ISBN
0-7803-7663-3
Type
conf
DOI
10.1109/ICASSP.2003.1199918
Filename
1199918
Link To Document