DocumentCode :
398615
Title :
Mean shift-based Bayesian image reconstruction into visual subspace
Author :
Vik, Torbjorn ; Heitz, Fabrice ; Charbonnier, Pierre
Author_Institution :
LSIIT UMR, Strasbourg I Univ., France
Volume :
1
fYear :
2003
fDate :
14-17 Sept. 2003
Abstract :
We present a new robust algorithm for reconstructing images into a linear subspace using MAP estimation. The algorithm takes into account the a priori distribution of the subspace variables and the noise is robustly modeled to allow for occlusions. The subspace distribution is estimated using nonparametric density estimation techniques. An efficient optimization scheme based on the mean shift procedure D Comaniciu et al. (2002) and on half-quadratic theory [ D Geman et al. (1992), P Charbonnier et al. (1997)] is developed, making optimization of the MAP function feasible for high-dimensional images. Preliminary results on real images demonstrate the contribution of a priori distribution modeling of sub-space variables, with respect to standard reconstruction methods over linear subspaces.
Keywords :
image reconstruction; maximum likelihood decoding; maximum likelihood estimation; MAP estimation; a priori distribution; half-quadratic theory; linear subspace; mean shift-based bayesian image reconstruction; nonparametric density estimation technique; optimization scheme; sub-space variable; subspace distribution; visual subspace; Additive noise; Bayesian methods; Gaussian noise; Image reconstruction; Independent component analysis; Kernel; Noise robustness; Phase estimation; Principal component analysis; Reconstruction algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7750-8
Type :
conf
DOI :
10.1109/ICIP.2003.1247057
Filename :
1247057
Link To Document :
بازگشت