• DocumentCode
    398677
  • Title

    3D fast ridgelet transform

  • Author

    Carré, Philippe ; Helbert, David ; Andres, Eric

  • Author_Institution
    IRCOM-SIC Lab., Futuroscope, France
  • Volume
    1
  • fYear
    2003
  • fDate
    14-17 Sept. 2003
  • Abstract
    In this paper, we present a fast implementation of the 3D ridgelet transform based on discrete analytical 3D lines: the 3D discrete analytical ridgelet transform (DART). This transform uses the Fourier strategy (the projection-slice formula) for the computation of the associated discrete Radon transform. The innovative step of the DART is the construction of 3D discrete analytical lines in the Fourier domain, that allows a fast perfect backprojection. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a DART adapted to a specific application. A denoising application is presented.
  • Keywords
    Fourier transforms; Radon transforms; image denoising; image reconstruction; wavelet transforms; 3D discrete analytical line construction; 3D discrete analytical ridgelet transform; Fourier domain; arithmetical thickness; denoising application; discrete Radon transform; fast perfect backprojection; projection-slice formula; Discrete Fourier transforms; Discrete transforms; Discrete wavelet transforms; Fourier transforms; Interpolation; Laboratories; Lattices; Wavelet analysis; Wavelet domain; Wavelet transforms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on
  • ISSN
    1522-4880
  • Print_ISBN
    0-7803-7750-8
  • Type

    conf

  • DOI
    10.1109/ICIP.2003.1247139
  • Filename
    1247139