DocumentCode
401682
Title
Factorization of Gaussian mixtures densities for hidden Markov models
Author
Li, Hao-Zheng ; Liu, Zhi-Qiang ; Zhu, Xiang-Hua
Author_Institution
Sch. of Continuing Educ., Beijing Univ. of Posts & Telecommun., China
Volume
3
fYear
2003
fDate
2-5 Nov. 2003
Firstpage
1482
Abstract
We present a factorial representation of Gaussian mixture models for observation densities in hidden Markov models. We derive the reestimation formulas for estimating the factorized parameters by the expectation maximization (EM) algorithm. As shown in the experiments, the proposed model is able to overcome the overfitting problem when sufficient training samples are not available.
Keywords
Gaussian processes; hidden Markov models; optimisation; parameter estimation; Gaussian mixtures density factorization; expectation maximization algorithm; hidden Markov models; probabilistic model; Australia; Biological information theory; Biological system modeling; Computer science; Hidden Markov models; Parameter estimation; Pattern recognition; Probability; Software; Speech recognition;
fLanguage
English
Publisher
ieee
Conference_Titel
Machine Learning and Cybernetics, 2003 International Conference on
Print_ISBN
0-7803-8131-9
Type
conf
DOI
10.1109/ICMLC.2003.1259728
Filename
1259728
Link To Document