Title :
A sufficient condition for locally controlled invariance of a manifold for general non linear systems
Author :
Consolini, Luca ; Tosques, Mario
Author_Institution :
Dipartimento di Ingegneria dell Informazione, Parma Univ., Italy
Abstract :
This paper presents a sufficient condition for a manifold ¿ to be locally controlled invariant at x0 ¿ ¿ which reduces, in the cases of linear and non linear affine systems, to well known results in the literature: essentially the result says that a manifold ¿ ¿ ¿n is locally controlled at x0 ¿ ¿ if first of all we can find a control u0 ¿ ¿m such that F(x0, u0) ¿ Tx0¿ (this condition is evidently necessary), second F(x,u) continues to stay in something larger than Tx¿ (namely Tx¿ + ¿uF(x, u)(¿m)) in a neighborhood of (x0, u0) in ¿ à ¿m.
Keywords :
invariance; nonlinear control systems; affine systems; controlled invariance; nonlinear control systems; Control systems; Counting circuits; Jacobian matrices; Linear systems; Nonlinear control systems; State-space methods; Sufficient conditions; Topology;
Conference_Titel :
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
Conference_Location :
Maui, HI
Print_ISBN :
0-7803-7924-1
DOI :
10.1109/CDC.2003.1272919