DocumentCode
417405
Title
A new signal model and identification algorithm for hidden semi-Markov signals
Author
Azimi, Mehran ; Nasiopoulos, Panos ; Ward, Rabab K.
Author_Institution
Dept. of Electr. & Comput. Eng., British Columbia Univ., Canada
Volume
2
fYear
2004
fDate
17-21 May 2004
Abstract
Markovian models form a powerful tool for modelling physical signals. In this approach, a signal generation model is employed, and its parameters are estimated from signal samples. We present a novel signal generation model for hidden semi-Markov models, HSMMs. Our model results in a significantly easier and more efficient parameter identification method. Instead of the constant probabilities presently used for modelling state transitions, we use state transition probabilities that are state-duration dependant. We then develop a parameter identification algorithm based on the maximum likelihood criterion. Our numerical results show that our parameter identification algorithm can successfully, and more efficiently, estimate the actual values of the model parameters of an HSMM signal.
Keywords
hidden Markov models; maximum likelihood estimation; probability; signal sampling; hidden semi-Markov models; maximum likelihood criterion; parameter estimation; parameter identification; signal generation model; signal model; signal samples; state transition probabilities; Context modeling; Hidden Markov models; Maximum likelihood estimation; Parameter estimation; Physics computing; Power engineering and energy; Power engineering computing; Signal generators; Signal processing; Speech processing;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
ISSN
1520-6149
Print_ISBN
0-7803-8484-9
Type
conf
DOI
10.1109/ICASSP.2004.1326309
Filename
1326309
Link To Document