• DocumentCode
    418995
  • Title

    Evolution to the Xtreme: evolving evolutionary strategies using a meta-level approach

  • Author

    Deugo, Dwight ; Ferguson, Darrell

  • Author_Institution
    Sch. of Comput. Sci., Carleton Univ., Ottawa, Ont., Canada
  • Volume
    1
  • fYear
    2004
  • fDate
    19-23 June 2004
  • Firstpage
    31
  • Abstract
    In this paper we describe a meta-level evolutionary system that uses a meta-level GA to evolve strategies that perform better than known good strategies on a test bed of mathematical optimization problems. We examine the effects of the meta-level components and parameters on the problem set in order to help others in choosing the components and parameters for their meta-GAs.
  • Keywords
    genetic algorithms; mathematical analysis; Xtreme; evolving evolutionary strategies; genetic algorithm; mathematical optimization problems; metaGA; metalevel components; metalevel evolutionary system; metalevel parameters; natural genetics; natural selection; Algorithm design and analysis; Buildings; Computer science; Drives; Evolutionary computation; Genetic algorithms; Genetic mutations; Neural networks; Performance evaluation; System testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation, 2004. CEC2004. Congress on
  • Print_ISBN
    0-7803-8515-2
  • Type

    conf

  • DOI
    10.1109/CEC.2004.1330834
  • Filename
    1330834