• DocumentCode
    419448
  • Title

    Grouping with bias for distribution-free mixture model estimation

  • Author

    Nock, Richard ; Pagé, Vincent

  • Author_Institution
    Campus de Schoelcher, Univ. Antilles-Guyane, Martinique, France
  • Volume
    2
  • fYear
    2004
  • fDate
    23-26 Aug. 2004
  • Firstpage
    44
  • Abstract
    Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained eigenvalues problems. We adapt recent statistical grouping algorithms to this task, as a nonparametric mixture model estimation problem. The approach appears to be attractive for its theoretical benefits, and its experimental results, as light bias brings dramatic improvements over unbiased approaches on hard images.
  • Keywords
    eigenvalues and eigenfunctions; image segmentation; constrained eigenvalues problems; image segmentation; mixture model estimation; spectral grouping algorithms; Automation; Clustering algorithms; Data mining; Eigenvalues and eigenfunctions; Image segmentation; Partitioning algorithms; Pattern recognition; Pixel;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-2128-2
  • Type

    conf

  • DOI
    10.1109/ICPR.2004.1334031
  • Filename
    1334031