• DocumentCode
    419606
  • Title

    A variational approach for color image segmentation

  • Author

    Nasios, Nikolaos ; Bors, Adrian G.

  • Author_Institution
    Dept. of Comput. Sci., York Univ., UK
  • Volume
    1
  • fYear
    2004
  • fDate
    23-26 Aug. 2004
  • Firstpage
    680
  • Abstract
    In this paper, we use a variational Bayesian framework for color image segmentation. Each image is represented in the Luv color coordinate system before being segmented by the variational algorithm. The model chosen to describe the color images is a Gaussian mixture model. The parameter estimation uses variational learning by taking into account the uncertainty in parameter estimation. In the variational Bayesian approach, we integrate over distributions of parameters. We propose a maximum log-likelihood initialization approach for the variational expectation-maximization (VEM) algorithm and we apply it to color image segmentation. The segmentation task in our approach consists of the estimation of the distribution hyperparameters.
  • Keywords
    Bayes methods; Gaussian distribution; image colour analysis; image representation; image segmentation; maximum likelihood estimation; optimisation; variational techniques; Gaussian mixture model; Luv color coordinate system; color image segmentation; hyperparameter distribution; image representation; maximum loglikelihood initialization; parameter estimation; variational Bayesian framework; variational expectation maximization algorithm; variational learning; Bayesian methods; Color; Computer science; Covariance matrix; Gaussian distribution; Image segmentation; Inference algorithms; Maximum likelihood estimation; Parameter estimation; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on
  • ISSN
    1051-4651
  • Print_ISBN
    0-7695-2128-2
  • Type

    conf

  • DOI
    10.1109/ICPR.2004.1334264
  • Filename
    1334264