DocumentCode :
423602
Title :
Neural network and tree automaton for seismic pattern recognition
Author :
Huang, Kou-Yuan ; Chao, Yi-Hsian
Author_Institution :
Dept. of Comput. & Information Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan
Volume :
1
fYear :
2004
fDate :
25-29 July 2004
Lastpage :
668
Abstract :
We combine neural network and syntactic pattern recognition, and propose a tree automaton system for the recognition of structural seismic patterns in a seismogram. Multilayer perceptron of the neural network is used for the identification of subpatterns, then a tree representation of the structural seismic pattern is constructed. We use three kinds of modified bottom-up structure preserved error correcting tree automata to recognize the tree representation of syntactic pattern, and propose a new top-down error correcting tree automaton to recognize non-structural preserved seismic pattern, in the experiments, the system is applied to the simulated and the real seismic bright spot patterns. The recognition result can improve seismic interpretation.
Keywords :
geophysics computing; multilayer perceptrons; pattern recognition; seismology; modified bottom-up structure preserved error correcting tree automata; multilayer perceptron; neural network; nonstructural preserved seismic pattern; seismic pattern recognition; seismogram; structural seismic pattern; syntactic pattern recognition; top-down error correcting tree automaton; tree automaton; Automata; Chaos; Computer networks; Error correction; Information science; Multi-layer neural network; Multilayer perceptrons; Neural networks; Pattern recognition; Tree data structures;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
ISSN :
1098-7576
Print_ISBN :
0-7803-8359-1
Type :
conf
DOI :
10.1109/IJCNN.2004.1379996
Filename :
1379996
Link To Document :
بازگشت