• DocumentCode
    424845
  • Title

    Confidence measure estimation in dynamical systems model input set selection

  • Author

    Deignan, Paul B., Jr. ; King, Galen B. ; Meckl, Peter H. ; Jennings, Kristofer

  • Author_Institution
    Sch. of Mechanical Eng., Purdue Univ., West Lafayette, IN, USA
  • Volume
    3
  • fYear
    2004
  • fDate
    June 30 2004-July 2 2004
  • Firstpage
    2824
  • Abstract
    An information-theoretic input selection method for dynamical system modeling is presented that qualifies the rejection of irrelevant inputs from a candidate input set with an estimate of a measure of confidence given only finite data. To this end, we introduce a method of determining the spatial interval of dependency in the context of the modeling problem for bootstrap mutual information estimates on dependent time-series. Additionally, details are presented for determining an optimal binning interval for histogram-based mutual information estimates.
  • Keywords
    estimation theory; nonlinear control systems; time series; time-varying systems; bootstrap mutual information estimates; confidence measure estimation; dependent time-series; diesel engine operation; dynamical system modeling; histogram-based mutual information estimates; information-theoretic input selection; model input set selection; optimal binning interval; spatial dependency interval;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2004. Proceedings of the 2004
  • Conference_Location
    Boston, MA, USA
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-8335-4
  • Type

    conf

  • Filename
    1383894