• DocumentCode
    434467
  • Title

    A scalable generative topographic mapping for sparse data sequences

  • Author

    Kabán, Ata

  • Author_Institution
    Sch. of Comput. Sci., Birmingham Univ., UK
  • Volume
    1
  • fYear
    2005
  • fDate
    4-6 April 2005
  • Firstpage
    51
  • Abstract
    We propose a novel, computationally efficient generative topographic model for inferring low dimensional representations of high dimensional data sets, designed to exploit data sparseness. The associated parameter estimation algorithm scales linearly with the number of nonzero entries in the observations while still learning a truly nonlinear generative mapping. The latent variables of the model lie in a 2D space that can be used for visualisation. We discuss related work and we provide experimental results on text based documents visualisation as well as the exploratory analysis of Web navigation sequences.
  • Keywords
    data models; data visualisation; document handling; parameter estimation; sequences; 2D space; Web navigation sequence; associated parameter estimation; exploratory analysis; generative topographic model; high dimensional data set; low dimensional representations; scalable generative topographic mapping; sparse data sequences; text based document visualisation; truly nonlinear generative mapping; Character generation; Computer science; Data mining; Data visualization; Electronic mail; Gold; Histograms; Navigation; Parameter estimation; Predictive models;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on
  • Print_ISBN
    0-7695-2315-3
  • Type

    conf

  • DOI
    10.1109/ITCC.2005.34
  • Filename
    1428436