DocumentCode
435168
Title
Change detection of hidden Markov models
Author
Gereneser, L. ; Molnár-Sáska, Gábor
Volume
2
fYear
2004
fDate
14-17 Dec. 2004
Firstpage
1754
Abstract
Let θˆN denote the maximum-likelihood estimator of the true parameter θ* of a hidden Markov Model with fixed gain or forgetting rate λ. We establish an explicit formula for the error term θˆN - θ*. Using the representation of the error term we investigate the effect of parameter uncertainty on the performance of an adaptive encoding procedure. Using this result and ideas from the theory of stochastic complexity a change point detection method for HMM-s will be developed.
Keywords
hidden Markov models; maximum likelihood estimation; stochastic processes; adaptive encoding procedure; change point detection; explicit formula; hidden Markov models; maximum-likelihood estimator; parameter uncertainty; stochastic complexity; Automation; Encoding; Estimation theory; Extraterrestrial measurements; Filters; Hidden Markov models; Maximum likelihood detection; State-space methods; Stochastic processes; Stochastic systems;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 2004. CDC. 43rd IEEE Conference on
ISSN
0191-2216
Print_ISBN
0-7803-8682-5
Type
conf
DOI
10.1109/CDC.2004.1430298
Filename
1430298
Link To Document