• DocumentCode
    437092
  • Title

    Mathematical properties of four wavelet filters and their performance in embedded image coders

  • Author

    Hongxing, Guo ; Lei, Su ; Shengsheng, Yu ; Jingli, Zhou

  • Author_Institution
    Dept. of Comput. Sci. & Eng., Huazhong Univ. of Sci. & Technol., Wuhan, China
  • Volume
    1
  • fYear
    2004
  • fDate
    31 Aug.-4 Sept. 2004
  • Firstpage
    831
  • Abstract
    This paper analyses the mathematical properties of four famous wavelets and evaluates their coding performance for different kinds of images in EZW image coders. It can be found that although the 9/7 biorthogonal wavelets, which obtain better tradeoff among incompatible mathematical properties, give the best performance. But it still can´t code edges and textures efficiently due to existing ringing and smearing artifacts at low bit rates. The harmonic decomposition must follow the uncertainty principle that prevents any atom perfectly, which is well localized in the space domain to retain frequency localization. It gives an opportunity to develop new paradigms to efficiently representing and coding structures very well localized in the space domain, but with large frequency band such as edges and textures.
  • Keywords
    filtering theory; image coding; transform coding; wavelet transforms; biorthogonal wavelets; embedded image coders; embedded zerotree wavelets; harmonic decomposition; uncertainty principle; wavelet filters; Bit rate; Computer science; Computer science education; Data storage systems; Filter bank; Frequency; Image analysis; Image coding; Low pass filters; Wavelet analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signal Processing, 2004. Proceedings. ICSP '04. 2004 7th International Conference on
  • Print_ISBN
    0-7803-8406-7
  • Type

    conf

  • DOI
    10.1109/ICOSP.2004.1452792
  • Filename
    1452792