DocumentCode
43805
Title
Constrained Optimal Input Signal Design for Data-Centric Estimation Methods
Author
Deshpande, S. ; Rivera, Daniel E.
Author_Institution
Control Syst. Eng. Lab. (CSEL), Arizona State Univ., Tempe, AZ, USA
Volume
59
Issue
11
fYear
2014
fDate
Nov. 2014
Firstpage
2990
Lastpage
2995
Abstract
This technical note examines the design of constrained input signals for data-centric estimation methods which systematically generate a local function approximation from a database of regressors at a current operating point. The proposed method addresses the optimal distribution of regressor vectors under constraints for a linear time-invariant (LTI) system. The resulting nonconvex optimization problems are solved using semidefinite relaxation methods. Numerical examples illustrate the benefits and usefulness of the proposed input signal design formulations.
Keywords
concave programming; function approximation; regression analysis; signal processing; LTI system; constrained optimal input signal design; data-centric estimation methods; linear time-invariant system; local function approximation; nonconvex optimization problems; operating point; optimal regressor vector distribution; regressor database; semidefinite relaxation methods; Approximation methods; Estimation; Noise; Optimization; Programming; Signal design; Vectors; Data-centric estimation; input signal design; semidefinite relaxation;
fLanguage
English
Journal_Title
Automatic Control, IEEE Transactions on
Publisher
ieee
ISSN
0018-9286
Type
jour
DOI
10.1109/TAC.2014.2351656
Filename
6882811
Link To Document