• DocumentCode
    445806
  • Title

    Analysis of phase transitions in KIV with amygdala during simulated navigation control

  • Author

    Kozma, Robert ; Myers, Mark

  • Author_Institution
    Div. of Comput. Sci., Memphis Univ., TN, USA
  • Volume
    1
  • fYear
    2005
  • fDate
    31 July-4 Aug. 2005
  • Firstpage
    125
  • Abstract
    A biologically inspired dynamical neural network model called KIV is used in this work to design autonomous agents. The KIV set models the vertebrate limbic system. Previous studies indicated that KIV is able to provide a control algorithm for navigation and decision-making for autonomous mobile agents. In this work we use Hilbert transform to capture global synchronized spatio-temporal patterns of amplitude modulation in KIV. We identify phase transition in the simulated amygdala and show that it shares several important features of EEC signals.
  • Keywords
    Hilbert transforms; mobile robots; navigation; neurocontrollers; EEC signals; Hilbert transform; KIV; amplitude modulation; amygdala; autonomous agents; autonomous mobile agents; decision making; dynamical neural network model; global synchronized spatio-temporal patterns; navigation control; phase transitions; vertebrate limbic system; Analytical models; Animals; Biological system modeling; Brain modeling; Chaos; Computational modeling; Computer science; Electroencephalography; Frequency synchronization; Navigation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on
  • Print_ISBN
    0-7803-9048-2
  • Type

    conf

  • DOI
    10.1109/IJCNN.2005.1555817
  • Filename
    1555817