• DocumentCode
    446791
  • Title

    Efficient FPGA implementation of a generic function approximator and its application to neural net computation

  • Author

    Bharkhada, Bharat Kishore ; Hauser, James ; Purdy, Carla

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH
  • Volume
    2
  • fYear
    2003
  • fDate
    30-30 Dec. 2003
  • Firstpage
    843
  • Abstract
    Typically, digital sigmoid implementations for neural nets have low accuracy or unwieldy memory requirements. The authors presented a highly accurate, memory-efficient sigmoid calculator, designed using a genetic algorithm. The VHDL design, implemented in an Altera Flex10K device, is easily reconfigurable for any sigmoid slope or for computing other required system-on-a-chip functions
  • Keywords
    field programmable gate arrays; function approximation; genetic algorithms; hardware description languages; neural net architecture; system-on-chip; FPGA; VHDL; generic function approximator; genetic algorithm; neural net computation; reconfigurable architecture; sigmoid calculator; system on a chip; Application software; Computational modeling; Computer science; Field programmable gate arrays; Genetic algorithms; Neural networks; Polynomials; Process control; System-on-a-chip; Table lookup;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 2003 IEEE 46th Midwest Symposium on
  • Conference_Location
    Cairo
  • ISSN
    1548-3746
  • Print_ISBN
    0-7803-8294-3
  • Type

    conf

  • DOI
    10.1109/MWSCAS.2003.1562418
  • Filename
    1562418