• DocumentCode
    455040
  • Title

    Linear Regression with a Sparse Parameter Vector

  • Author

    Larsson, Erik G. ; Selén, Yngve

  • Author_Institution
    Sch. of EE, Commun. Theory, R. Inst. of Technol., Stockholm
  • Volume
    3
  • fYear
    2006
  • fDate
    14-19 May 2006
  • Abstract
    We consider linear regression under a model where the parameter vector is known to be sparse. Using a Bayesian framework, we derive a computationally efficient approximation to the minimum mean-square error (MMSE) estimate of the parameter vector. The performance of the so-obtained estimate is illustrated via numerical examples
  • Keywords
    Bayes methods; least mean squares methods; regression analysis; signal processing; Bayesian framework; MMSE estimate; linear regression; minimum mean-square error estimate; sparse parameter vector; Bayesian methods; Councils; Gaussian noise; Information technology; Linear regression; Maximum likelihood estimation; Parameter estimation; Vectors; Virtual reality; White noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
  • Conference_Location
    Toulouse
  • ISSN
    1520-6149
  • Print_ISBN
    1-4244-0469-X
  • Type

    conf

  • DOI
    10.1109/ICASSP.2006.1660652
  • Filename
    1660652