DocumentCode
457261
Title
Asymmetric kernel method and its application to Fisher´s discriminant
Author
Koide, N. ; Yamashita, Yukihiko
Author_Institution
Graduate Sch. of Sci. & Eng., Tokyo Inst. of Technol.
Volume
2
fYear
2006
fDate
20-24 Aug. 2006
Firstpage
820
Lastpage
824
Abstract
In this paper, we propose the asymmetric kernel method. Furthermore, we apply it to Fisher´s discriminant and provide an kernel Fisher´s discriminant with variable kernel parameters. We also provide the experimental result of the existing and the new kernel Fisher´s discriminants by using several standard datasets and show the advantage of our method
Keywords
statistical analysis; Fisher discriminant; asymmetric kernel method; variable kernel parameters; Error analysis; Hilbert space; Kernel; Pattern recognition; Principal component analysis; Support vector machine classification; Support vector machines;
fLanguage
English
Publisher
ieee
Conference_Titel
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
Conference_Location
Hong Kong
ISSN
1051-4651
Print_ISBN
0-7695-2521-0
Type
conf
DOI
10.1109/ICPR.2006.278
Filename
1699331
Link To Document