• DocumentCode
    46122
  • Title

    Colour compressed sensing imaging via sparse difference and fractal minimisation recovery

  • Author

    Ji-xin Liu ; Xiao-fei Li ; Guang Han ; Ning Sun ; Kun Du ; Quan-sen Sun

  • Author_Institution
    Eng. Res. Center of Wideband Wireless Commun. Technol., Nanjing Univ. of Posts & Telecommun., Nanjing, China
  • Volume
    9
  • Issue
    5
  • fYear
    2015
  • fDate
    5 2015
  • Firstpage
    369
  • Lastpage
    380
  • Abstract
    In colour compressed sensing (CS) imaging, the current two bottlenecks for application are (1) high computation cost of sparse representation (SR) with over-complete dictionary and (2) unsatisfactory imaging quality of CS recovery with l1-norm minimisation. Thus, this study proposes a novel colour CS imaging framework. In the framework, two improvements are achieved: (1) the authors present the sparse difference to reduce the computation cost of SR in RGB colour imaging; (2) the authors use fractal dimension instead of l1-norm as the object function to actualise high quality CS recovery. The feasibility of our colour CS imaging framework is proved by sseveral experiments.
  • Keywords
    compressed sensing; fractals; image colour analysis; image representation; minimisation; sparse matrices; CS recovery; RGB colour imaging; SR computation cost; colour compressed sensing imaging; computation cost; fractal dimension; fractal minimisation recovery; l1-norm minimisation; overcomplete dictionary; sparse difference; sparse representation; unsatisfactory imaging quality;
  • fLanguage
    English
  • Journal_Title
    Image Processing, IET
  • Publisher
    iet
  • ISSN
    1751-9659
  • Type

    jour

  • DOI
    10.1049/iet-ipr.2014.0346
  • Filename
    7095755