• DocumentCode
    463988
  • Title

    Asymptotic Cram??r-Rao Bound for Multi-Dimensional Harmonic Models

  • Author

    Sajjad, N. ; Boyer, Remy

  • Author_Institution
    Lab. des Signaux et Syst., CNRS, France
  • Volume
    3
  • fYear
    2007
  • fDate
    15-20 April 2007
  • Abstract
    The multi-dimensional harmonic model has attracted considerable attention for a variety of applications in signal processing. Stoica and Nehorai have derived the asymptotic (ie., for large analysis duration) Cramer-Rao lower bound (ACRB) which represents the minimal theoretical variance in the estimation of the model parameters for a one-dimensional harmonic model of order M. In this work, we generalize and analyze the ACRB associated to a M-order harmonic model of dimension P with P > 1.
  • Keywords
    harmonic analysis; signal processing; M-order harmonic model; asymptotic Cramer-Rao lower bound; large analysis duration; minimal theoretical variance; multi-dimensional harmonic models; signal processing; Analysis of variance; Audio compression; Digital signal processing; Harmonic analysis; Multidimensional signal processing; Parameter estimation; Radar signal processing; Sensor arrays; Tensile stress; Uninterruptible power systems; Parameter estimation; multidimensional signal processing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on
  • Conference_Location
    Honolulu, HI
  • ISSN
    1520-6149
  • Print_ISBN
    1-4244-0727-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.2007.366861
  • Filename
    4217891