Title :
Curve Clustering with Spatial Constraints for Analysis of Spatiotemporal Data
Author :
Blekas, K. ; Nikou, C. ; Galatsanos, N. ; Tsekos, N.V.
Author_Institution :
Univ. of Ioannina, Ioannina
Abstract :
In this paper we present a new approach for curve clustering designed for analysis of spatiotemporal data. Such kind of data contains both spatial and temporal patterns that we desire to capture. The proposed methodology is based on regression and Gaussian mixture modeling and the novelty of the herein work is the incorporation of spatial smoothness constraints in the form of a prior for the data labels. This enables the proposed model to take into account the underlying property of spatiotemporal data that spatially adjacent data points most likely should belong to the same cluster. A maximum a posteriori Expectation Maximization (MAP-EM) algorithm is used for learning this model. We present numerical experiments with simulated data where the ground truth is known in order to assess the value of the introduced smoothness constraint, and also with real cardiac perfusion MRI data. The results are very promising and demonstrate the value of the proposed constraint for analysis of such data .
Keywords :
Gaussian processes; data analysis; expectation-maximisation algorithm; pattern clustering; regression analysis; Gaussian mixture modeling; curve clustering; maximum a posteriori expectation maximization algorithm; regression method; spatial smoothness constraint; spatiotemporal data analysis; Artificial intelligence; Bioinformatics; Clustering algorithms; Clustering methods; Computer science; Data analysis; Magnetic resonance imaging; Parametric statistics; Pixel; Spatiotemporal phenomena;
Conference_Titel :
Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE International Conference on
Conference_Location :
Patras
Print_ISBN :
978-0-7695-3015-4
DOI :
10.1109/ICTAI.2007.24