• DocumentCode
    47218
  • Title

    Stacked Sequential Scale-SpaceTaylor Context

  • Author

    Gatta, Carlo ; Ciompi, Francesco

  • Author_Institution
    Centre de Visio per Computador, Bellaterra, Spain
  • Volume
    36
  • Issue
    8
  • fYear
    2014
  • fDate
    Aug. 2014
  • Firstpage
    1694
  • Lastpage
    1700
  • Abstract
    We analyze sequential image labeling methods that sample the posterior label field in order to gather contextual information. We propose an effective method that extracts local Taylor coefficients from the posterior at different scales. Results show that our proposal outperforms state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2 data sets.
  • Keywords
    feature extraction; image representation; image segmentation; learning (artificial intelligence); CAMVID data set; KAIST2 data set; MSRC-21 data set; contextual information; eTRIMS8 data set; local Taylor coefficients extraction; posterior label; sequential image labeling methods; stacked sequential scale-space Taylor context; Context; Feature extraction; Image segmentation; Nickel; Semantics; Training; Vectors; Contextual modeling; semantic image labeling; stacked sequential learning;
  • fLanguage
    English
  • Journal_Title
    Pattern Analysis and Machine Intelligence, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0162-8828
  • Type

    jour

  • DOI
    10.1109/TPAMI.2013.2297706
  • Filename
    6701326