• DocumentCode
    478244
  • Title

    Quantum Complexity of the Approximation on the Classes B(Wrp([0, 1]d)) and B(Hrp([0, 1]d))

  • Author

    Ye, Peixin

  • Author_Institution
    Sch. of Math. Sci., Nankai Univ., Tianjin
  • Volume
    3
  • fYear
    2008
  • fDate
    18-20 Oct. 2008
  • Firstpage
    667
  • Lastpage
    671
  • Abstract
    The optimal order of complexity of the approximation of the imbedding from anisotropic Sobolev classes B(Wp r ([0, 1]d)) and Holder Nikolskii classes B(Hp r([0, 1]d)) into the Lq([0, 1]d) with q les p quantum computation model is obtained up to logarithmic factors. It shows that the quantum algorithms are not significantly better than the classical ones for this type of problems.
  • Keywords
    computational complexity; quantum computing; Holder Nikolskii classes; anisotropic Sobolev classes; quantum algorithms; quantum complexity; Anisotropic magnetoresistance; Approximation algorithms; Computational modeling; Computer science; Databases; Mathematical model; Mathematics; Physics computing; Quantum computing; Random variables; Quantum approximation; anisotropic classes; minimal query error;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation, 2008. ICNC '08. Fourth International Conference on
  • Conference_Location
    Jinan
  • Print_ISBN
    978-0-7695-3304-9
  • Type

    conf

  • DOI
    10.1109/ICNC.2008.221
  • Filename
    4667220