• DocumentCode
    478599
  • Title

    Consistency Techniques for Finding an Optimal Relaxation of a Feature Subscription

  • Author

    Lesaint, David ; Mehta, Deepak ; O´Sullivan, Barry ; Quesada, Luis ; Wilson, Nic

  • Volume
    1
  • fYear
    2008
  • fDate
    3-5 Nov. 2008
  • Firstpage
    283
  • Lastpage
    290
  • Abstract
    Telecommunication services are playing an increasing and potentially disruptive role in our lives. As a result, service providers seek to develop personalisation solutions that put customers in charge of controlling and enriching their services. In this context, the personalisation approach consists of exposing a catalogue of call control features (e.g., call-divert, voice-mail) to end-users and letting them subscribe to a subset of features subject to a set of precedence and exclusion constraints. When a subscription is inconsistent, the problem is to find an optimal relaxation. We present a constraint programming formulation to find an optimal reconfiguration of features. We investigate the performance of maintaining arc consistency within branch and bound search. We also study the impact of maintaining mixed consistency, that is maintaining different levels of consistency on different sets of variables. We further present a global constraint and a set of filtering rules that exploit the structure of our problem. We theoretically and experimentally compare all approaches. Our results demonstrate that the filtering rules of the global constraint outperform all other approaches when a catalogue is dense, and mixed consistency pays off when a catalogue is sparse.
  • Keywords
    constraint handling; personal computing; telecommunication services; tree searching; branch and bound search; consistency techniques; constraint programming; feature subscription; optimal relaxation; personalisation solutions; telecommunication services; Subscriptions; Constraint Programming; Global Constraints; Internet Telephony;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Tools with Artificial Intelligence, 2008. ICTAI '08. 20th IEEE International Conference on
  • Conference_Location
    Dayton, OH
  • ISSN
    1082-3409
  • Print_ISBN
    978-0-7695-3440-4
  • Type

    conf

  • DOI
    10.1109/ICTAI.2008.61
  • Filename
    4669702