Title :
Applying Complex Network Method to Software Clustering
Author :
Qian Gunqun ; Lin, Zhang ; Li, Zhang
Author_Institution :
Sch. of Compute Sci. & Eng., Beihang Univ., Beijing
Abstract :
There has been considerable interest in network motif for understanding network local features, growth and evolution mechanisms. In order to discover the relationship between software networks and various realistic networks and apply complex network community detection methods to software clustering, we extended the network motif research to software domain. After comparing triad significance profiles from 138 Java open source software packages, we found that software networks could be divided into 3 clusters which are consistent with the known super-families from various other types of networks. It seems that software scale may be one of the reasons causing different motif SP distribution. Most of middle and large scale software networks have similar local structure with biological networks. They may share the same design and evolving principles. Moreover, we applied the community detection algorithm of complex networks to the software clustering problem and made comparisons with bunch using the same clustering criterion. The results of our experiment show that the clustering result is better than the bunch method.
Keywords :
Java; pattern clustering; public domain software; reverse engineering; software packages; Java open source software packages; biological networks; complex network community detection methods; evolution mechanisms; motif significance profile distribution; network motif; reverse engineering; software clustering; Clustering algorithms; Complex networks; Computer networks; Detection algorithms; Evolution (biology); Large-scale systems; Open source software; Reverse engineering; Software algorithms; Software systems; complex network; motif; reverse engineering; software clustering; superfamily;
Conference_Titel :
Computer Science and Software Engineering, 2008 International Conference on
Conference_Location :
Wuhan, Hubei
Print_ISBN :
978-0-7695-3336-0
DOI :
10.1109/CSSE.2008.1012