Title :
Hyperspectral Detection and Identification with Constrained Target Subspaces
Author :
Adler-Golden, S. ; Gruninger, J. ; Sundberg, R.
Author_Institution :
Spectral Sci., Inc., Burlington, MA
Abstract :
Subspace methods for hyperspectral imagery enable detection and identification of targets under unknown environmental conditions by specifying a subspace of possible target spectral signatures (and, optionally, a background subspace) and identifying closely fitting spectra in the image. In this study, detection performance in the thermal infrared (IR) was compared using various constrained and unconstrained basis set expansions of low-dimensional target subspaces. An initial investigation of detection using retrieved atmospheric parameters to reduce subspace size and/or dimensionality has also been performed.
Keywords :
object detection; object recognition; atmospheric parameters; environmental conditions; hyperspectral imagery; target detection; target identification; target spectral signatures subspace; thermal infrared spectra; Atmospheric modeling; Atmospheric waves; Hyperspectral imaging; Hyperspectral sensors; Information retrieval; Infrared detectors; Object detection; Subspace constraints; Temperature distribution; Temperature sensors; detection; hyperspectral; infrared; invariant; subspace;
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International
Conference_Location :
Boston, MA
Print_ISBN :
978-1-4244-2807-6
Electronic_ISBN :
978-1-4244-2808-3
DOI :
10.1109/IGARSS.2008.4779029