DocumentCode :
484927
Title :
An Automatic Visual Detecting Method for Semantic Object in Video
Author :
Zongmin, Li ; Deshan, Li ; Hua, Li ; Zongkai, Lin
Author_Institution :
Sch. of Comput. & Commun. Eng., China Univ. of Pet., Dongying
Volume :
1
fYear :
2008
fDate :
6-8 Oct. 2008
Firstpage :
210
Lastpage :
215
Abstract :
In this paper, we propose an approach to automatic detection of semantic object. The method provides an effective content expression pattern for semantic analysis and retrieval of video. In the moving semantic object detection model, motion contrast is computed based on the planar motion (homography) between frames, which is estimated by applying RANSAC algorithm on point correspondences in the scene. In the semantic object detection model of static frame, the three features used are intensity, color and texture. Then a dynamic fusion technique is applied to combine these models. The automatic detection method can greatly decrease computation and be used in pervasive computing environment conveniently. Experimental results verify efficiency of proposed approach.
Keywords :
image colour analysis; image motion analysis; image texture; semantic networks; ubiquitous computing; video retrieval; RANSAC algorithm; automatic visual detecting method; dynamic fusion technique; motion contrast; moving semantic object detection model; pervasive computing; planar motion; semantic analysis; video retrieval; Content based retrieval; Data mining; Humans; Image motion analysis; Man machine systems; Motion analysis; Object detection; Pervasive computing; Petroleum; Spatiotemporal phenomena; automatic detection; pervasive computing; saliency map; semantic object;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pervasive Computing and Applications, 2008. ICPCA 2008. Third International Conference on
Conference_Location :
Alexandria
Print_ISBN :
978-1-4244-2020-9
Electronic_ISBN :
978-1-4244-2021-6
Type :
conf
DOI :
10.1109/ICPCA.2008.4783578
Filename :
4783578
Link To Document :
بازگشت